On Arbitrarily Slow Rates of Global Convergence in Density Estimation

نویسندگان

  • Luc Devroye
  • L. Devroye
چکیده

Assume that one has to estimate a density f on R e from X1, ..., Xn, a sequence of independent random vectors with common density f A density estimate is a sequence (f,) of Borel measurable mappings: R a ( n + ~ R ; for fixed n, f (x) is estimated by f,~(x)=f,(x, X 1 . . . . , X,). In this note, we take a look at the rate of convergence of E(~ ]f , (x)f (x) lPdx) ( p > l ) for all density estimates. We could for instance inquire about the uniform rate of convergence over a suitable class of densities E, i.e. our criterion is

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Wavelet-Based Estimation for Derivative of a Density under Random Censorship

In this paper we consider estimation of the derivative of a density based on wavelets methods using randomly right censored data. We extend the results regarding the asymptotic convergence rates due to Prakasa Rao (1996) and Chaubey et al. (2008) under random censorship model. Our treatment is facilitated by results of Stute (1995) and Li (2003) that enable us in demonstrating that the same con...

متن کامل

Deconvolution with Supersmooth Distributions

The desire to recover the unknown density when data are contaminated with errors leads to nonparametric deconvolution problems. Optimal global rates of convergence are found under the weighted Lp-loss (1 $ p $ 00). It appears that the optimal rates of convergence are extremely slow for supersmooth error distributions. To overcome the difficulty, we examine how large the noise level can be for d...

متن کامل

Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples

Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...

متن کامل

Best attainable rates of convergence for the estimation of the memory parameter

The purpose of this note is to prove a lower bound for the estimation of the memory parameter of a stationary long memory process. The memory parameter is defined here as the index of regular variation of the spectral density at 0. The rates of convergence obtained in the literature assume second order regular variation of the spectral density at zero. In this note, we do not make this assumpti...

متن کامل

Parametrically assisted nonparametric estimation of a density in the deconvolution problem

Nonparametric estimation of a density from contaminated data is a difficult problem, for which convergence rates are notoriously slow. We introduce parametrically assisted nonparametric estimators which can dramatically improve on performance of standard nonparametric estimators when the assumed model is close to the true density, without degrading much the quality of purely nonparametric estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1983